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Thermo dynamic Properties of Substances as a Function of Reduced Temperature. 
I. Latent Heat. Vapor Volume and Vapor Pressure of Water 

BY HAROLD A. FALES AND CLARA S. SHAPIRO 

In a previous article we have studied the rela
tion between the ratio of orthobaric volumes and 
the reduced temperature of thirty diverse sub
stances and shown that the relationship1 

In V« - k ^ T«)" 
(1) 

where r = "reduced" temperature T/T„; k, m 
and it are characteristic constants, holds within 
experimental limits. 

In the present study we have made an attempt 
to express other thermodynamic properties in 
terms of reduced temperature in hope that it 
might throw some light on two problems: (a) 
latent heat as function of temperature alone; (b) 
the theory of corresponding states of van der 
Waals. 

Dieterici very early recognized the importance 
of a detailed investigation of the relation between 
the reduced temperature and thermal properties 
of liquids for the final settling of the above two 
questions. He was concerned primarily with the 
ratio of volumes VJ F1, but his ideas can be ap
plied to any particular "reduced" magnitude. 
Having established an approximate relationship 
between the inner latent heat and In VJVt he 
became interested in expressing Z,ev as function of 
the temperature alone, in finding a functional re
lation between pressure and temperature and in 
advancing the theory of corresponding states. 
In one of his papers Dieterici suggested an ap
proach to these problems as follows:2 "According 
to the theory of corresponding states . . . the term 
In Fg/F1 should have at equal reduced tempera
tures one and the same value for all 'normal' or
ganic liquids. In reality this theory does not hold 
exactly. Still, if one plots In VJ V\ against r one 
finds that the curves for normal substances deviate 
so little from each other that one can regard them 
all as identical. It would be of great interest to 
study In VJ F1 as function of reduced temperature 
and thus express the latent heat in terms of tem
perature alone.3 This seems to be the most im
portant problem. It is also certain that should 

(1) H. A. Fales and C. S. Shapiro, THIS JODRNAL, SS, 2418 (1936). 
(2) C. Dieterici, Ann. Physik, 85, 569 and especially 578 (1908). 
(3) By substituting into Dieterici's equation: / . e v = CRT In 

Vj/Vi +RT where C is a constant. 

this function be found, it would be a definite ad
vance toward the fundamental question—the va
por pressure as function of temperature alone.4 

It is further possible that the deviations from the 
law of corresponding states are conditioned by the 
values of the critical constants of the different sub
stances." 

Since the proposed equation (1) expresses VJ F1 

with requisite accuracy, we feel justified, on the 
basis of the above quotation from Dieterici, to 
continue the investigation in order to see to what 
extent the previous findings could be applied to 
the relationship between the latent heat and tem
perature and to the theory of corresponding states. 

In the first part of this paper we shall discuss 
the thermodynamic properties of one substance, 
namely, the latent heat, the vapor volume and the 
vapor pressure of water (the ratio VJ F1 having 
been given before). 

As far as we know there is no record of an at
tempt to correlate latent heat or vapor density 
with temperature, except for certain empirical 
equations with a large number of constants used 
by observers as a check on their measurements. 

As to the vapor pressure, this property in its re
duced form has been the subject of numerous in
vestigations, the purpose of which was to find the 
possible causes of the deviations from the corre
spondence rule.B We shall discuss here the work of 
Cederberg, which is the most interesting of all.6 

Cederberg's equation is really a modification of a 
formula by van der Waals and based on the theory 
of corresponding states 

1 - T 
In PJPa = A (2) 

where r is the reduced temperature; P c r and P s 

are the critical and saturation pressures, respec
tively, and A is a universal constant. 

Van der Waals' equation holds only for an ideal 
substance; in actual cases A changes with tem
perature as well as from liquid to liquid. 

(4) By substituting into the Clapeyron-Clausius equation: 
dP/dT = TL0V(Vg - V1). 

(5) For a review of this subject and for the bibliography refer to 
Karl Jellinek, "Lehrbuch der phys. Chem.," Vol. I, ed. 1928, Verlag 
von Ferdinand Enke, Stuttgart, pp. 696-710. 

(6) I. Cederberg, KgI. Svenska Vetenskapsakad., Arkiv Matematik, 
Astronomi och Fysik, 10, No. 7 (1914) (in German). 
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Cederberg constructed his modification in ac
cordance with several assumptions: first, t ha t for 
every substance the factor A is passing through a 
minimum which lies a t about 0.8 of critical tem
perature. This was found to be true for a large 
number of substances by Schames.7 The second 
assumption by Cederberg was tha t for every sub
stance the curve A-T is symmetrical about the 
perpendicular to the abscissa erected from the 
"minimum" point. The third was tha t each 
branch of the A-T curve is an exponential func
tion of reduced temperature. All these supposi
tions were embodied in his expression 

A = ab(* - y)' and (3) 

In p,r/p. = 2.30 ab(r - y)' £Lz_l) (4) 
T 

where 2.30 is the modulus of the natural log; T is 
the reduced temperature; a is the minimum value 
of A; y is the reduced temperature corresponding 
to this minimum and & is a constant characteristic 
for a given liquid. 

Cederberg has tested about sixteen substances 
and found t ha t the constants a, b and y vary with 
the chemical nature of the liquid. Thus a ranges 
from 3.1 for water to 2.77 for carbon tetrachloride; 
b varies from 2.4 for benzene to 1.58 for oxygen; 
y is nearly constant, the limits being 0.71 for oxy
gen and 0.80 for carbon dioxide. 

Cederberg's calculations agree on the whole 
remarkably well with the observed pressures. 
For organic liquids the average deviation of his 
equation is about 0 .3% for the entire range, which 
compares very well with the empirical equation of 
Biot having six constants and used by Young to 
check his pressure measurements8 

1Og10P = a + ba'-<' + c/3<-<° (5) 

where a, b, c, a, /3, and to are characteristic for 
each substance. 

For water the agreement is still better, the aver
age deviation being less than 0 . 1 % between melt
ing point and critical point against the measure
ments of the Reichsanstalt.6 As a final check 
Cederberg has calculated the pressure gradient for 
water and used it to calculate the latent heat 
which he then compared with the available meas
urements (100-180°) by Holborn and Henning of 
the Reichsanstalt. The difference averaged about 
0.2% which, he felt, was within experimental 
limits.9 In a few cases the discrepancy is consid
erable: thus for oxygen and for carbon dioxide 

(7) L. Schames, Verh. Deulsch. Phys. Ces., 1«, 1017 (1913). 
(8) S. Young, Proc. Roy. Dublin Soc, 12, 374 (1910). 
(9) I. Cederberg, Physik. Z., 18, 697 (1914). 

the deviations a t times reach 2 % and are not 
evenly distributed. This may be partially due, 
according to the author, to inconsistencies in the 
experimental data, which were compiled from 
several short range observations by different ex
perimenters. 

In spite of all the good points mentioned above, 
Cederberg's equation did not receive universal 
recognition. The reason for this, we believe, is 
the following. The validity of the assumptions 
on which his idea is based may be open to question. 
Thus exceptions exist for which the constant A 
shows no minimum, bu t decreases steadily with 
temperature. These are helium and argon, as 
was shown by H. K. Onnes and C. Crommelin.10 

Also the symmetrical shape of the A-T curve is 
doubtful because several liquids of those tested by 
Cederberg actually have shown a slight asym
metry. In such cases he considered the deviation 
to be due to errors in the critical pressure which he 
has changed arbitrarily so as to fit the require
ment. Although the change in most cases was a 
fraction of a per cent., i. e., within the limits of 
experimentation, this seems to us an artificial and 
inaccurate procedure. This will be clear from the 
following instances. In the case of hexane the 
critical pressure had to be changed by 0.4% before 
true symmetry could be attained, still the agree
ment was not as good as with other substances. 
In the case of water the asymmetry was very pro
nounced and the critical pressure was decreased 
from the observed value of 217.0 atm. (Reichsan
stalt) to an arbitrary value of 216.3 atm., which 
gave the desired equality of the two branches and 
resulted in good agreement along the saturation 
line. One would expect the later measurements of 
Pcrit to agree with Cederberg's value. On the 
contrary, the recent, very exact extrapolation 
from the latest observed pressures in the critical 
region leads to the value Pcr = 218.7 a tm . 
(Keyes).11 We see tha t the change lies in the op
posite direction from tha t guessed by Cederberg. 

Another objection to Cederberg's formula is its 
sensitivity to errors in critical temperature and in 
vapor pressure. Although he does not discuss 
this point, it seems to be obvious from the very 
form of his function 

In Pa/P, = 2.30 ab(r - y)> ( 1 ~ T ) (4) 

(10) H. K. Onnes and C. Crommelin, Leiden Commun., Nos. 
120a, 119 and 124a. 

(11) L. B. Smith, F. G. Keyes and H. T. Gerry, Proc. Am. Acad. 
Set., 69, 137 (1934). 
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In this equation the term T — y = T—0.75 approx. 
is very small and passes through zero at r = 0.75. 
An error of 0.1-0.5° in the critical temperature 
will influence it very much, particularly for sub
stances with T„ between 5 and 100°K. Since 
the term (T — y)2 is an exponent, it is clear that any 
error in it will considerably affect the log and still 
more the calculated pressure itself, especially at 
high temperatures. 
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In addition the pressure data will have an in
fluence on the deduced constants due to the fact 
that in order to find the exact location of the mini
mum point, y, one has actually to plot the curve 
A-T, as was done by Cederberg. This requires 
a priori knowledge of observed data at high tem
peratures. Where these pressure data are scant 
or inaccurate the value of the constant y is uncer
tain and the formula becomes unreliable. This 
was the case with oxygen, where according to the 
author the experimental values of P were unrelia
ble. The irregularities in the A-r curve near the 
minimum point are thereby explained along with 
the resulting discrepancies between calculations 
and experiment. 

The above listed defects of the Cederberg equa
tion kad to the conclusion that another form of a 
"reduced" pressure equation would be desirable, 
one free from the stated objections and yet giving 
the same or better accuracy both for the pressures 
and for their derivatives with respect to tempera
ture. 

Such an equation when tested on a large num
ber of substances undoubtedly would lead to a bet
ter understanding of the correspondence principle 
and its limitations. The same would be true not 
only of pressure, but of any other property as well. 

As the first step toward the solution of this prob
lem we have plotted on one and the same graph 
the thermodynamic properties of one substance 
against reduced temperature. 

We have selected water as our test substance 
because of its importance and because its proper
ties are measured very precisely between the melt
ing point and the critical temperature. In Fig. 1 
we show the curves, which follow each other in the 
order: In PJ Ps; In Vx/Va; In VJVx and 
Ltv/T, the last term being the entropy of evapora
tion. 

AU these curves coincide at T = 1.000, where 
the corresponding magnitudes assume the value 
zero. Inspection of the graphs reveals at once a 
striking similarity of form and although they rep
resent different physical properties, they seem to 
belong to one and the same family. The question 
arises whether it is possible to express the curves 
as functions of form similar to equation (1). 

As regards latent heat or, better, the entropy of 
evaporation Lev/T, the similarity between its 
curve and that of In VJVx supports the view of 
other investigators, especially Dieterici12 and Mac-
Dougall13 that the two properties must be some
how related to each other, although it must be 
noted that these and other authors were unsuccess
ful in their attempts to find a satisfactory rela
tionship. 

On the basis of the similarity between the re
spective curves we have applied the proposed equa
tion^ 1) in its original form to the entropy of Wapo-
ration 

O e v ,— , - = -
(1 2) cal.'per mole (6) 

where S is the entropy of evaporation; Lev is the 
molar latent heat; T and r are the absolute and 
the reduced temperatures, respectively, and k'", 

(12) C. Dieterici, Ann. Pkysik, 25, 569 (1908) and 62, 75 (1920). 
(13) F. H. MacDougall, THIS JOORNAL, 38, 528 (1916), and 39, 

1229 (1917). 
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m'", n'" are constants different from those in 
equation (1). 

To test this equation we have proceeded exactly 
as was described for the ortfcobaric densities.1 

Three observed values of L^, a t three different 
temperatures were used to calculate the constants. 
The three reference points were exactly the same 
as before. The observed values of Lev were those 
of the Bureau of Standards.14 Their measure
ments extend from 50 to 370° and agree with the 
measurements of the Reichsanstalt" within 
± 0 . 1 % on the average for the same interval. 
The measurements of the Bureau of Standards are 
represented by an empirical equation14 within 
±0.04% in the interval 0-270° (see Table I). 

In Table I we give details of our calculations. 
In successive columns will be found the values of 
the entropy of evaporation in calories per mole, 
the observed and calculated latent heats in calories 
per gram, the differences between observed and 
calculated values in calories and the same in per 
cent. The average deviation of the proposed 
equation is given at the bottom of the last column. 
The estimated tolerance of this equation and the 
accuracy of the Bureau of Standards formula also 
are given for comparison. At the bottom of 
Table I are given the two equations for reference. 

The accuracy of the proposed equation is of the 
same order as in the case of orthobaric volumes.L 

The entropy of evaporation is entirely analogous 
to the term In Vg/Vi, since the form of the func
tion is identical for both. Therefore the deviation 
again will be composed of two terms: the error in 
Ta which is the same as before and equal to 0.15% 
on the average and the error in latent heat meas
urement which is about 0.1% for water as stated 
above. The total estimated accuracy should 
be: 0.15 + 0.10 = 0.25%, which is exactly the 
figure obtained for the volume ratio. Of course 
near the critical point (T = 0.95 to 1.0) the error 
in Tcr will increase and the expression6 is not ex
pected to hold as was explained previously.1 

In examining the last column of Table I we find 
that the maximum deviation between 60 and 350° 
is 0.25%, while the average deviation intheinterval 
40-350° is ALev = 0.11% against the expected 
deviation of 0.25%. This is quite within the 
limits of experimentation and is much better than 

(14) Latent heat and empirical equation (0-270°): N. S. Osborn, 
H. F. Stimson and E. F. Fiock, Bur. Standards J. Rtsearch, S, 411 
and 478 (1930). Latent heat up to t° crit.: N. S. Osborn, H. F. 
Stimson and D. C. Ginnings, Preliminary Report, Mech. Eng., 57, 
162 (1935). 

(15) M. Jacob and W. Fritz, Physik. Z., SO, 651 (1935). 

TABLE I 

WATER ~ 

Latent heat: k =• 17.678; »» = 0.418097; n - 1.01293 

/, 0C. 
0 

+ 20 
40 
60* 
80 

100 
120 
140 
160 
180 
200* 
220 
240 

sen 
280 
300 
320 
340 
350* 
360 
374.11 

T 

0.42196 
.45287 
.4837« 
.51467* 
.54557 
.57647 
.60738 
.63828 
.86918 
.70008 
.73098* 
.76189 
.79279 
.82869 
.85459 
.88549 
.916X9 
.91730 
.96275* 
.97820 

1.00000 

9 na V 

T 
cal./mole, 
observed 

Latent heat,° 
cal. per gram 

obsd. 
<39.8568)(598.467) 
(36.0049)(585.628) 
(33.0654)(574.517) 
30.4615 
28.1316 
26.0265 
24.1053 
22.3338 
20.6823 
19.1257 
17.6406 
16.2062 
14.8017 
13.4064 
11.9956 
10.5370 
8.9773 
7.2038 
6.1541 
4.8748 

0 

563.083 
551.236 
538.874 
525.849 
511.992 
497.088 
480.903 
463.136 
443.468 
421.463 
396.611 
368.189 
335.115 
295.474 
245.092 
212.799 
171.267 

0 

calcd. 
591.S87 
582.761 
573.323 
563.083 
552.049 
540.100 
527.158 
513.1S8 
497.916 
481.312 
463.138 
443.120 
420.941 
896.088 
367.830 
335.019 
295.613 
245.264 
212.799 
170.621 

0 

Differences 
actual 

cal. ALev% 
- 5 . 0 8 0 
- 2 . 8 6 7 
- 1 . 1 9 4 

0* 
+0 .813 
+1.226 
+ 1.310 
+ 1.13« 
+ 0.828 
+ .409 

0* 
- .348 
- .522 
- .524 
- .359 
- .096 
+ .189 
+ .172 

0* 
- .«46 

0 .8 
.5 
.2 
0* 
.W 
.22 
.25 
.20 
.15 
.08 

0* 
.09 
.10 
.12 
.10 
.03 
.04 
.07 

0* 
.40 

Average differences: 
40-350° Proposed equation 0 ,11% 
0-270° Empirical equation of the Bur. Standards .04% 

Estimated accuracy of proposed equation 25% 
Proposed equation: 

L kf"(l — Ts)m"f 

S6V - — - TTT, cal./mole, range 40-850° 
T T 

Empirical equation Bureau of Standards: 

U, - A(t°„ - <°)« - B(4 - t°) + C(4 - t°)°-> - DHl1 -i°)°-a 

Range: 0-270° 
* Asterisks mark reference points. 
" Values in parentheses are extrapolated by the Bureau of 

Standards. 

was found for the volume ratio; (A In = 0.25% 
against 0.25%).J In the critical region the agree
ment is far better than could be expected, the dif
ference being only 0.4% at 360°. On the other 
hand, near the melting point the discrepancy be
tween calculated Lev and that extrapolated by the 
Bureau of Standards is undoubtedly larger than 
any possible error of extrapolation, namely, 0.8-
0.5% between 0 and 30°. 

On the whole, taking into consideration that in 
the proposed equation there are only three con
stants and that it applies to an interval of about 
300°, we can say that its accuracy is approaching 
that of the empirical equation of the Bureau of 
Standards with four constants (Al,ev = 0.11% 
against 0.04%), the latter being designed only for 
the interval 0-270°. 

Before proceeding any further we have to test 
equation (6) to see if it satisfies certain theoretical 
requirements. It has been shown by Gibbs on the 
basis of strict thermodynamical relations and with 
the aid of his model of the "primitive" surface that 
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different properties will reach different limiting 
values at the critical point.16 Thus for the latent 
heat and the latent heat gradient it follows, at the 
critical temperature 

Lev = T(Sn. - S1I9) = 0 (7) 

AL/AT = St - S1 + T ( g ? - g ) = - » (8) 

The two conditions are then that Lev should ap
proach the value zero and that the rate of its 
change with temperature should approach minus 
infinity as r approaches unity. 

It is obvious that the proposed equation (6) will 
satisfy the first requirements, since according to 
the theory of limits the term (1— T2)m'" should 
approach zero as a limit when T = 1.000 for cases 
where the exponent m is positive.17 

In order to test the latent heat gradient we have 
to differentiate equation (6) with respect to T, 
thus obtaining 
d-Ley _ 

AT 

-k'"(\ - T*)™'"-L{2m'" - n'" + 1 + ( » ' " - 1 ) / T 2 J 
T » " ' - 2 

cal./degree (9) 

At the critical point the expression in the square 
brackets of eq. (9) reduces to 2m'", while the 
term (1 —r2)m _ 1 becomes infinitely large. This 
again follows from the theory of infinite series,17 

namely: the expression (1 — x)~a approaches in
finity as x approaches unity. Since for water 
m'" = 0.418, the exponent m'" — l will be nega
tive and the limit — » will be reached at r = 1.000 

Hm (1 - T2)m'"-i = - oo 

T >• 1.000 (10) 

The limiting value of the latent heat gradient now 
can be shown easily to approach — » . The limit 
of a product is equal to the product of the limits 
of the composing terms, whence 

j ^ 1 O T = - " ' " r o ' " l i m ( 1 - r 2 ) T O " " 1 = - C D (H) 
r > 1.000 

We thus see that at the critical point the latent 
heat gradient will become negatively infinite in 
accordance with the above requirement. 

In view of the fact that the proposed equation 
(6) gives correct limiting values for the latent heat 
and its rate of change with temperature at the 
critical temperature and since the agreement is 

(16) W. Gibbs, "Scient. Papers," Vol. I, pp. 34-46 and 100-134. 
Also an easy and simple account is given in: J. R1 Partington, "A 
Textbook of Thermodynamics," D. Van Nostrand Co., New York, 
N. Y., ed. 1913, pp. 240-252 and especially pp. 246 and 249. 

(17) T. J. I 'A Bromwich, "Theory of Infinite Series," Macmillan 
& Co., London, 1908, Ch. VIII, p. 152. 

good in the long interval 40-350°, we feel that at 
least for water it is possible to express latent heat 
as a function of (reduced) temperature alone within 
the limits of observation. 

The further testing of the equation is prevented 
by the lack of long range measurements on latent 
heat of other substances. The use of the Clapey-
ron-Clausius equation as a check on the proposed 
formula is not reliable because its accuracy depends 
largely on the. accuracy of the term dp/d T and 
consequently on the equation of state used in 
each particular case. In some instances the error 
in dp/dT amounts to 3% and more at the end-
points: the melting point and the critical region, 
as was shown for Biot's pressure formula and the 
latent heat of organic liquids by Mills.18 

Before leaving the subject we might give a semi-
theoretical proof of the proposed equation for la
tent heat. For perfect gases Kirchhoff's law 
states19 

-Tjr = Cp ga» — Cp Hq = —c = constant (12) 

where CP is the molar specific heat of gas and 
liquid, respectively, and is assumed independent 
of temperature for an ideal substance. 

The expression (12) can be integrated between 
limits T and Tct 

d i e v = I (Cp gas — Cp liq) AT = 
T JT 

/*r« 
— c J AT where c — constant (13) 

JT 
L.VJ, - LeVT = - c(T„ - D = 

-cT„ (1 - T) (14) 
changing all — signs for + and remembering that 
Lev = 0 at r c r , we get 

Lev = cTa, (1 - r) (15) 

Dividing both sides by T and simplifying we ob
tain for the entropy of evaporation 

Sev = ^ = < ^ - ^ (16) 

where c is a constant. Equation (16) shows that 
for perfect vapors both the entropy of evaporation 
and the latent heat should be proportional to 
(1 — T)/T. In the case of real vapors the relation
ship is expected to be more complicated, since the 
factor c is not a constant—the difference in specific 
heats of the two phases is in itself a function of 
temperature. 

(18) J. E. Mills, J. Phys. Chem., 8, 383 and 394 (1904). 
(19) A clear statement of Kirchhoff's law can be found in: K. 

Jellinek, "Lehrbuch der phys. Chem.," Vol. I, Verlag von Ferdinand 
Enke, Stuttgart, 1928, pp. 97-98. W. Nernst, "Theoretical Chem 
istry," Macmillan & Co., London, 1911, p. 57. 
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The proposed equation (6) 

is very similar to the above expression (16) except 
that it contains exponents. The exact thermody-
namical derivation of this equation cannot be 
given as long as the specific heats of liquid and va
por are not yet known as functions of temperature. 

The next property to be considered is the vapor 
volume. A priori the reduced volume Vgas/^cr 
may be thought analogous to the term Fgas/F)iq 

which is the relative volume during the change of 
state of aggregation. In the two ratios the nu
merators are the same and the denominators differ 
in that the variable V1^ is replaced by a constant 
Vcr. The two corresponding curves In Vg/Vcr 

and In VJ V^ in Fig. 1 quite support this view: 
they are neighbors in the coordinate system and 
they have very similar shapes. 

One is tempted again to apply the original 
equation (1) 

and 

V1U = V„ ek —?*' cm. Vg. (18) 

The equation (18) was tested against the vapor 
volume data for water calculated from an exact 
equation of state and published last year by the 
Massachusetts Institute of Technology (0-340°) 
and the Bureau of Standards data (0-370°), cal
culated from observed latent heat and the Clapey-
ron-Clausius equation. The two sets of data agree 
within 0.03% on the average, except in the critical 
region where the latter set seems the more reliable 
(340-370°). The critical volume at 374.11° is 
that extrapolated by Keyes.20 

In Table II we give the results of our calcula
tions on volume. In column 3 are given the In 
Vg/Vcr values derived from the M. I. T. data 
(0.-340°) and from the Bureau of Standards data 
(350-370°). In column 4 are shown the differ
ences between these and the In values calculated 
from proposed equation (17). At the bottom of 
this column are given the average percentage de
viation and the estimated accuracy of equation 
(17). 

The expected accuracy of equation (17) is the 
same as that of equation (1) for the volume ratio. 

(20) Saturation vapor volumes: F. G. Keyes, L. B. Smith and 
H. T. Gerry, Proc. Am. Acad. Arts Set., 70, 319 (1936); and N. S. 
Osborn, H. F. Stimson and E. F. Fiock, Mech. Eng., 67, 162 (1935); 
critical volume: L. B. Smith and F. G. Keyes, Proc. Am. Acad. 
Arts Sd., 69, 285 (1934). 

The error in the critical temperature is the same— 
0.15%. The error in vapor volume is small for 
water and has a negligible effect on the In VJVa. 
The error in critical volume is also not large. The 
last two may be considered as amounting to less 
than 0.1% and the total error will be 0.25% as be
fore.1 The average deviation actually found is 
only AIn = 0.09% for the whole range; this is 
much better than could be expected, particularly 
in the critical region where AIn = 0.5% at 360°. 

In the following two columns are given the vol
umes themselves in cc. per gram calculated from 
the proposed equation (18) and compared with the 
corresponding data. In the last column is given 
the percentage deviation A V for each temperature 
as well as the average A V% for the intervals 20-
374.11 °. For comparison are also shown the aver
age tolerance of the Clapeyron-Clausius equation 
and the average difference between it and the 
Keyes equation of state. All three equations are 
shown at the bottom of Table II. 

When we come to volumes themselves it may 
appear at first glance that equation (17) would not 
hold at very high temperatures due to large devia
tion in the In Vg/Vcr. Here, however, the effect 
is diminished rather than increased, for the follow
ing reason. In calculating the volumes we are 
dealing not with the log but with the function it
self. At high temperatures (about 340°) the na
tural log of the reduced volumes approaches unity 
and for these small values of the log a large percen
tage difference in its value corresponds to a very 
small percentage difference in its number. There
fore, a 1% deviation in the log corresponds to only 
a fraction of a per cent, in the volume itself. We 
see that equation (18) is applicable at the very 
highest temperatures. In examining the last col
umn of Table II we actually see that at 360° the 
calculated Fgas differs by only 0.5% from the 
Bureau of Standards value. In the interval 20-
350°, the agreement also is very good, the average 
difference being only 0.17%, which compares well 
with the tolerance of Clapeyron-Clausius equation 
—-0.13% (0.1% due to Lev measurements and 
0.03% due to the term Ap/6T). On the con
trary near the melting point our calculations are 
decidedly off, the discrepancy amounting to 2-
0.5% between 0 and 30°. Of course, this is to 
be expected in this interval, because for large 
values of the natural log the error in the num
bers A V% is correspondingly large. 

We see that the reduced volume equation (18) 
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/,0C. 

0 
+20 

40 
60* 
80 

100 
120 
140 
160 
180 
200* ' 
220 
240 
260 
280 
300 
320 
340 
350* 
360 
374.11 

T 

0.42196 
.45287 
.48376 
.51467 
.54557 
.57647 
.60738 
.63828 
.66918 
.70008 
.73098 
.76189 
.79279 
.82369 
.85459 
.88549 
.91639 
.94730 
.96275 
.97820 

1.00000 

>n: rangi 

Vapor volumes: k «= 

In Vg/Vl 
Keyes equation 

11.0753 
9.80362 
8.71836 
7.78385 
6.97192 
6.26018 
5.63086 
5.06931 
4.56376 
4.10446 
3.68308 
3.29267 
2.92653 
2.57875 
2.24295 
1.91190 
1.57550 
1.21495 
1.01215 
0.77508 
0 

Average A In = 
Estimated accuracy = 

5 20-360°: In VJ Vn = 

TABLE I I 

W A T E R 

3.2813; m = 

A In, % 
proposed 

+ 0 . 2 
+ .05 
+ .01 

0* 
+ .01 
+ .02 
+ .025 
+ .02 
+ .02 
+ .01 

0* 
- .01 
+ .01 
+ .04 
+ .10 
+ .20 
+ .25 
+ .20 

0* 
+ .60 

.09 

.25 

h . (1 - " ) » 

0.47169; n = 1.5190 
Volumes cc. 

I 
Keyes equation 

206300 
57824 
19543 
7678.3 
3409,2 
1673.2 
891.65 
508.53 
306.76 
193.80 
127.18 
86.070 
59.684 
42.149 
30,122 
21.625 
15.438 
10.764 
8.798 
6.941 
3.1975 

Proposed-

1%. 
Il 

Proposed 
210361 

58162.3 
19568.2 
7678,3 
3412.4 
1675.55 
892.972 
509.208 
307.020 
193.860 
127.180 
86.036 
59.682 
42.184 
30.188 
21.709 
15.517 
10.801 
8.798 
6.907 
3.1975 

Average differences 
- K e y e s eq. 20-360° 

Clapeyron-Keyes 20-340° 
Accuracy of Clapeyron eq. 

W 
2.0 
0 .5 

.15 
0* 

.07 

.13 

.15 

.12 

.09 

.03 
0* 

.04 

.01 

.10 

.20 

.45 

.50 

.35 
0* 

.50 

.00 

.17 

.03 

.13 

Empirical equation: Keyes, Smith and Gerry, range 0-340°: 

where B0 = C - (£>/r)10^ ra 

B. = l/(o + bx1/a + cx)(l + aV°) 
T, = t. + 273.16 and x = 4r - U . 

Clapeyron-Clausius equation: Vg — V\ = „ , , "T.- .̂ 

AT, 
P, 

+ B0-B, 

applies well for water in the long interval of about 
300° and on the whole compares favorably with 
the Clapeyron-Clausius equation. It is to be 
noticed in this connection that the Keyes equa
tion of state agrees with Clapeyron-Clausius far 
more closely (0.03%) (see Table II). 

To test the volume formula for the limiting val
ues we have again calculated the volume gradient 
and the vapor volume at the critical point. It is 
obvious from equations (17) and (18) that In 
^g/ J7M- will be equal to zero and the reduced va
por volume will be unity at the critical point, thus 
satisfying the physical conditions and Gibbs' pos
tulates.16 The volume gradient d V/dT is derived 
easily from equation (18) in a manner similar to 
that for latent heat gradient, giving 

At the critical point the expression for dV/dT will 
again become infinite, because the exponent m" 
= 0.47 and m" — 1 is negative. This will make 
the term (1—r2)m - 1 approach infinity as T ap
proaches unity as was shown above for d i e v / d r . 
The limit for dV/dT at the critical temperature 
will be 
dV -Vc, 2k"m" 
ATcr 

Um(I - r!) S W " - 1 — _ , (20) 

In other words, according to the proposed equation 
(18) the vapor volume will approach its critical 
value with a negative infinite rate at the critical 
point. This agrees exactly with the theoretical 
requirements which follow from Gibbs' thermo
dynamic surface,16,21 namely 

(21) 

dI7d7' = 
- Vg*,-k"{l 2\w, 

In the vicinity of Tes 

at T0, 
AT/Av > 01 
dT/d» = 0 / 

TV T»*- ! 

(2m" — n" + n'/r1) c c / degree (19) 

(21) See J. R. Partington, "A Textbook of Thermodynamic*," 
D. Van Nostrand Co., New York, 1913, p. 240 and especially 
p. 248, 
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The fact that the limiting conditions eq. (21) 
are satisfied and the general agreement with relia
ble volume data is good leads to the conclusion that 
for water the vapor volume also can be expressed 
in terms of reduced temperature with required ac
curacy. 

We now come to the last of the properties dis
cussed here, the vapor pressure. The equation of 
Cederberg (4) cited in the beginning of this article 
suggests that the natural logarithm of the reduced 
pressure is an exponential function of reduced 
temperature. The defects of his equation, how
ever, show that this function must be of a differ
ent form from that devised by Cederberg. 

Such a new relation is again suggested to us by 
Fig. 1 of the present paper. In examining the 
lowest curve, In Pcr/PSatd we see its similarity to 
the others, except in the region 0.8-1.0 of the criti
cal temperature. One should expect then some 
slight modification of equation (1) to hold for 
this magnitude as well as for the rest. 

In accordance with these conclusions we first 
tried a general form of equation (1) containing 4 
constants 

InPJP. • fc> (1 + ^ " g ~ T ) " (22) 

Tested on water it gave an average deviation of 
0.5% which we consider insufficiently accurate. 

We returned to the original form (1) with 3 con
stants 

(l _ _2W 

In PJP. = W (— r J ' (23) 
and 

L , (1 - r')">' 

P.»td = Pn e"k ^ — atm. (24) 
where k', m',n' are parameters different from those 
previously given. 

This equation was checked against the latest 
data on vapor pressure of water. The values be
tween 0-100° are based on the observations of the 
Reichsanstalt in 1910 and adjusted b y the empiri
cal equation of the Bureau of Standards. The 
values between 100 and 374.11° are measurements 
of the Massachusetts Institute of Technology, 
while the critical pressure is an extrapolation from 
the above data by Keyes.22 

In Table III we give as before the complete cal
culations. The columns follow in the same order 
as in Table I I : the observed In PCT/PS; the de
viations, per cent. lnobsd — lnoaicd, including their 

(22) Pressures (0-100°): N. S. Osborn and C. H. Meyers, Bur. 
Standards J. Research, IS, 1 (1934). Pressures (100-374°) and 
P,-,-: L. B. Smith, F. G. Keyes and H. T, Gerry, Proc. Am. Acad. 
Arts Sci.. 69, 137 and 139 (1934), 

average, compared with the estimated accuracy of 
the proposed equation; the observed and calcu
lated pressures in atmospheres and the percentage 
differences P0bsd_-fcaicd including the average dif
ferences A P%. As before we give the average ac
curacy of the Bureau's equation. Finally we show 
the actual form of the Bureau's equation together 
with that of the proposed equation (23). 

In order to have a complete check on the for
mula we have calculated the pressure gradient for 
the whole range including the critical point and 
compared these values with the pressure gradient 
derived from the Bureau of Standards equation. 
The actual values dP/dT derived from the two 
formulas together with the corresponding differ
ences in percentages are given at the bottom of 
Table III. 

The estimated accuracy of the pressure equa
tions (23, 24) was found to be exactly the same as 
for latent heat and vapor volume. This follows 
from the fact that (as before) the error in Tcr is 
0.15%, the error in observed vapor pressure is very 
small for water and can be neglected, while the er
ror in the critical pressure will influence the In 
Per/Ps to not more than 0.1%, giving again the 
total estimated accuracy equal to 0.25%. 

The average deviation actually found is 0.12% 
between 20 and 350°, which is again entirely 
within the limits. 

In regard to the pressures themselves the same 
must be told as in respect to vapor volumes, 
namely, that the equation will give good results up 
to the critical temperature, since the deviation of 
the number is much smaller than the correspond
ing deviation of its natural log when the latter 
approaches the value unity. In examining the 
last column we find accordingly that the 
deviation is only 0.1% for pressure at 360°. The 
average difference is of the same order: AP = 
0.08% between 60° and critical temperature, 
which compares fairly well with the average devia
tion of 0.02% shown by the Bureau's equation (7 
constants) between 0° and Tcr. At the very low 
temperatures, 0-50°, we again find large percent
age differences (4-2%) which, however, in terms 
of atmospheres are of small magnitude only. 

It remains now to verify the limiting values for 
pressure and pressure gradient at the critical 
point as well as the whole range of dP/dT values 
derived from the expression (24). 

It is obvious here (see eqs. 23-24) that at the 
critical point In x and T will be equal to zero and 
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(, 0C. 
0 

+ 2 0 
40 
60* 
80 

100 
120 
140 
160 
180 
200* 
220 
240 
260 
280 
300 
320 
340 
350* 
360 
374.11 

Estimated 

Vapor pressures: k 

T 

0.42196 
.45287 
.48376 
.51467 
.54557 
.57647 
.60738 
.63828 
.66918 
.70008 
.73098 
.76189 
.79279 
.82369 
.85459 
.88549 
.91639 
.94730 
.96275 
.97820 

1.00000 

In Pcr/P, 
obsd. 

10.4967 
9.1557 
8.0060 
7.0120 
6.1458 
5.3853 
4.7126 
4.1136 
3.5764 
3.0931 
2.6540 
2.2542 
1.8874 
1.5496 
1.2367 
0.9452 

.6721 

.4145 

.2905 

.1689 
0 

Average A In 
accuracy of proposed equation 

* Asterisks mark reference points. 

Proposed equat :ion: In Pn/P, „ (1 - rT' 
~ R n' 

TABLE III 

WATER 

= 3.4771; m = 
AIn % 

obsd. — calcd. 

+ 0 . 4 
+ .2 
+ .06 

0* 
- .02 
- .02 
- .01 

.00 

.00 

.00 
0* 

.00 
- .09 
- .15 
- .20 
- .25 
- .25 
- .20 

0* 
+ .60 

• 12% 
. 2 5 % 

0.97084; n = 1.5058 
Pressures, atm. 

obsd. 

0.0060273 
.0230420 
.0727480 
.196560 
.467396 

1.0000 
1.9595 
3.5669 
6.1032 
9.8959 

15.3520 
22.8970 
33.0440 
46.3220 
63.3430 
84.7760 

111.402 
144.139 
163.164 
184.260 
218.167 

Bur 

AP % 
calcd. obsd.—calcd 

0.0057777 
.0226646 
.0723783 
.196560 
.467877 

1.00105 
1.96070 
3.56696 
6.10288 
9.89576 

15.3520 
22.8980 
33.0927 
46.4167 
63.4980 
84.9828 

111.609 
144.250 
163.164 
184.079 
218.167 

Average differences: 
Proposed eq. 60-374° 

. Standards eq. 0-374° 

4.0 
1.6 
0 .5 
0* 

.10 

.10 

.06 

.00 

.00 

.00 
0* 

.00 

.15 

.20 

.25 

.25 

.20 

.08 
0* 

.09 

.00 

.08 

.02 

Bur. Standards eq.: logi0P = A + BfT + (Cx/T)(10Dxi - 1) + £(10F»V") 
where: x = T1 - K, y = t°T - t" and A, B,- C, D, E, P and K are constants. 

I, °C. 

0 
+ 2 0 

40 
60 
80 

100 
120 
140 
160 
180 
200 
240 
260 

Pressure gradient dp/dT of water 
dp/dT calculated 

Bur. Stan. Eq. Proposed eq. 

0.00043729 
.00142704 
.00387960 
.0091004 
.0189322 
.035699 
.062076 
.100934 
.155201 
.227701 
.321129 
.580950 
.75246 

0.000429495 
.00142322 
.00388702 
.00912506 
.0189593 
.0357119 
.0620613 
.100891 
.155232 
.227793 
.320556 
.582725 
.754938 

DiS., % 

+ 2 . 0 
- 0 . 3 
+ .2 
+ .2 
+ .15 
+ .04 
- .02 
- .04 
+ .02 
+ .04 
- .15 
+ .3 
+ .3 

;, 0C. 

280 
300 
320 
340 
350 
360 
370 
373.5 *. 
374.0 
374.05 
374.11 

Bur. Stan. Eq. 

0.95570 
1.19479 
1.47572 
1.80896 
2.00197 
2.22115 
2.48495 
2.607 (interp.) 
2.63079 
(Not given) 
(Not given) 

Proposed eq. 

0.958399 
1.19628 
1.47339 
1.79913 
1.98695 
2.16762 
2.413 
2.666 
2.878 
2.9295 

OO 

Average diff.: (20-320°) 
Accuracy Bur. Stand. (0-374°) 

Diff., % 

+ 0 . 3 
+ .09 
- .15 
- .6 
- .8 
- 2 . 5 
- 3 . 0 
+ 2 . 5 
+ 9 . 0 

0.13 
.03 

unity, respectively, which are the values required 
by theory. 

As to the pressure gradient it will be exactly the 
same in form as the volume gradient but with the 
sign reversed 

P. (\ — T > 1 m ' ~ 1 

dP/dr = Q- k'(- £± (2m' «' + n'/r2) (25) 

At the critical temperature this will reduce to 
-Per (dP/dT)c, T,r 

2k'm' Hm 
(1 - T2)-"' + « (26) 

because m' = 0-97 and m'~x is a small negative 
fraction. This shows that the vapor pressure de
rived from proposed equation (24) will approach 
its critical value at a positive infinite rate. This 
is contrary to general conceptions, since it was 
shown by Planck that 6.P/6.T should reach a finite 
value at the critical temperature.23 This follows 
from the theoretical deduction that the first de
rivative AP/AT and the partial derivative at con-

(23) M. Planck, Ann. Physik, [3] 15, 457 (1882). 
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stant volume J j ^ _ approach each other at 

high temperatures and finally must become equal 
at the critical point; the partial derivative 
must of course be finite at any temperature, hence 

Iim (a?) - (w\. c -finite number (27) 

T—> Ta 

In order to investigate more fully the discrep
ancy for AP/AT "proposed," we have extended 
the calculations up to the highest values of T, 
namely, up to r = 0.9999. This gave us an idea 
of the rate at which AP/AT approaches infinity. 
Actual figures in Table III show that even at r = 
0.9999 (374.05°) the value AP/AT is still a small 
number only 10% higher than the value given by 
the Bureau of Standards at 374.0°, namely, 2.9295 
atm./deg. against 2.6308 atm./deg. 

We come to the conclusion that at a tempera
ture only 0.05° lower than the critical the pressure 
gradient derived from the proposed equation is 
finite and quite close to the value derived from a 
very accurate pressure equation of an entirely dif
ferent type. It is only in the infinitesimal interval 
of 0.05°, which is entirely outside of the experi
mental limits for Tcr, that AP/AT would acquire 
infinite value. 

Since the critical temperature of water is un
certain by ±0.05° and since for other substances 
the precision is still less, we feel that the limit for 
the pressure gradient (dP/dr ) c r may be taken 
as equal to AP/AT at 0.9999rcr and, conse
quently, finite. 

At temperatures other than the critical the 
AP/AT "proposed" can be considered in fairly 
good agreement with the latest data. The 
Bureau of Standards equation yields AP/AT 
values which are in perfect agreement with the 
values of Keyes, Smith and Gerry, the difference 
being 0.03% on the average. From Table III it 
is evident that the deviation of the proposed 
equation from that of the Bureau of Standards 
averages 0.13% between 20 and 320°. This is 
notably close agreement in view of the small 
number of constants in equation (23) as com
pared with the other two formulas. On the other 
hand, at 0 and at 350° the proposed equation 
deviates considerably from the reliable data, since 
there the discrepancy amounts to 2% and in
creases up to 9% at 374.05°. The signs of the 
deviations are rather normally distributed, but 
above 370° (equation 25) yields values which 
are always too high. 

If we combine the above results with respect 
to the pressure equation we can say that the 
pressure itself gives a very small deviation and 
the same is true for the pressure gradient for an 
interval of about 300°. Also the limiting values 
of Ps and Ap/AT are given correctly at the criti
cal point defined within =*=0.05°. Consequently 
the vapor pressure of water and its derivative can 
be expressed as functions of reduced tempera
ture alone within experimental limits. 

The form of the function here chosen seems 
superior to that of Cederberg in several points: 
(1) It has the same number of constants and for 
their evaluation no previous knowledge of pressure 
data is required except for three isolated values. 
(2) The critical pressure has little effect on its 
accuracy and no arbitrary adjustment of this or 
other data is necessary. (3) It is influenced much 
less by errors in critical temperature, since the 
reduced temperature, or any other variable does 
not enter in the exponents m' and n'. Therefore 
it is expected to give better results for substances 
with low critical temperature. 

For water its agreement with experiment is of 
the same order as Cederberg's calculations AP = 
0.08% (proposed) against 0.1% and AAp/AT is 
0.13% (20-320°) (proposed) against 0.2% (100-
180°).24 

We express our thanks to Dr. Henry Fleishmann 
and the Educational Alliance, New York, for 
renewed financial assistance given to one of us 
(C. S.) during this work. 

Conclusions 
We now can summarize our findings with re

spect to the investigated thermal magnitudes. 
We see that the first prediction of Dieterici 
quoted on p. 784 of this article is verified com
pletely. 

1. The study of the volume ratio as a function 
of reduced temperature leads to the formulation 
of a relationship between latent heat and (re
duced) temperature alone, which holds within 
experimental limits. 

2. It further leads to a functional relationship 
between pressure and volume and (reduced) tem
perature alone which likewise holds with required 
accuracy. 

The method of approach in the present work 
was, however, different from that of Dieterici. 
Instead of a lengthy path of term by term sub-

(24) The derivative of Cederberg's equation was not tested at 
very low or very high temperatures. 
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stitution suggested by him, the desired functions 
were obtained from analytical relations between 
the respective curves. 

The similarity in the shapes of the graphs 
In PJPS; In Vg/Vcr; In VJV1 and Lev/T 
as functions of T suggested that all these curves 
belong to one and the same family of algebraic 
functions and can be expressed by a common 
equation 

y - * ( ( ! - r t ) » / T » ) 

differing only in the values of the parameters k, 
m and n. 

The close interrelation between all these prop
erties is further evident from the fact that the 
values of the above parameters are close to each 
other when different properties of one and the 
same substance are compared, as the following 
table shows for water. 

In the first part of the present article we cal
culate the latent heat, the vapor volume and the 
vapor pressure of water using the equations 

L,v/T = k'" { J , / (Ia) 
Cl _ -2)m" 

In VJ V„ - *' U
 r y (Ib) 

In P JP, = k1 K-—-P- (Ic) 

which are all of the same type but differ in the 
values of the parameters k, m and n. 

In this second part of the paper we will apply 
the equation of reduced pressure to a large num
ber of substances with a view to arriving at some 
modification of the principle of corresponding 
states which might embrace different types of 
compounds. 

The thirty substances selected for the test are 
the same as chosen previously in the study of 
orthobaric densities1 with one exception: carbon 
dioxide is substituted for sulfur dioxide in view 
of its greater importance and because its vapor 
pressure and pressure gradient have been deter
mined recently with great precision by the Bureau 

(1) H. A. Fales and C. S. Shapiro, THIS JOURNAL, 88, 2418 (1936). 
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Property k m n Substance 

Latent heat 17.678 0.41810 1.0129 
Volume ratio 4.122 .3770 1.338 H5O 
Vapor volume 3.281 .47169 1.5190 
Vapor pressure 3.4771 .97084 1.5058 

We have tested here only one substance, water, 
yet the good results obtained with this substance, 
having an extremely long saturation line, give 
every reason to believe that other substances will 
give support to the above findings. 

It remains to see whether the second prediction 
of Dieterici is correct, namely, that a detailed 
investigation of reduced properties will lead to 
the reestablishment of the principle of corre
sponding states at least for organic liquids and 
that the deviations, where encountered, will be 
found as due to differences in the critical data. 
This we expect to do in Part II of this study. 
N E W YORK, N. Y. RECEIVED DECEMBER 23, 1937 

of Standards.8 The calculations for carbon 
dioxide (entire range of saturation) are shown 
here in detail in Table I which gives: the observed 
In PCI/PS; the percentage differences between 
observed and calculated In values; and the 
average percentage deviation. The estimated 
accuracy of the equation for carbon dioxide also 
is given at the bottom of column 4. In examin
ing the figures we see that the agreement is very 
good throughout, since the actual average devia
tion (A In = 0.04%) is far smaller than the esti
mated one (A In = 0.25%). 

In the last three columns we give the observed 
and calculated pressures and the percentage dif
ferences A P % including the average percentage 
difference. This is compared with the average 
deviation of the empirical equation of the Bureau 
of Standards.2 

We see that the pressures themselves are rep
resented with high precision up to the very highest 
temperatures. In the critical region at 31.0° the 
difference is only 0.1% and the average deviation 
for the whole temperature range is only 0.09%. 

(2) C. H. Meyers and M. S. Van Dusen, / . Research Bur. Stand
ards, 10, 381 (1933). 
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